2.3 EVG6200

Wafer / substrate parameters:

<u>Size:</u> 3" – 200mm, up to 200mm x 200mm

Thickness:

Mask aligner:	0.1 – 10 mm (max 2 mm for bottom side alignment)
Bond aligner: height 4.5mm	0.1 – 3 mm for each wafer or substrate, max stack

Mask parameters: size: 9" x 9", thickness: < 7mm

Alignment:

Range of alignment: X, Y ± 5mm

Rotation: Theta 3°

All movements are performed fully motorized, controlled by analog three axes joystick or manually using high precision micrometers spindles

Alignment accuracy:

Mask aligner:	down to $\pm 0.5 \mu m$ for top side alignment		
	down to $\pm 1\mu m$ for top to bottom side alignment		
Bond aligner:	down to \pm 0.5µm for glass/silicon		
	down to $\pm 1\mu m$ for silicon/silicon		

Handling system:

Three axis robot

Wafer cassettes: Up to 5 cassette stations, free programmable as send, receive or standby cassette.

Robot accuracy: ± 25µm

Accuracy of prealignment station:

X: ± 50µm, Y: ± 50µm, Theta: ± 0.09°

8

Separation/ proximity adjustment:

Separation: Up to $1000\mu m$ adjustable in $1\mu m$ steps, software controlled.

Contact force:

Between mask and substrate for wedge compensation.

<u>Mask aligner:</u> Adjustable from 0.5 – 40N (without tools loaded, e.g. mask holder, mask)

<u>Bond aligner:</u> Adjustable from 1 - 40N (without tools loaded, e.g. bond chuck)

Printing resolution: (350 - 450nm)*

Vacuum contact: down to 0.6µm

Soft contact:	down to 2.0 µm
Hard contact:	down to 1.5µm
Proximity:	down to 4.0 at 20 µm gap

* results achieved with EVG standard process and materials

Monitor/ Camera:

High resolution B/W CCD camera and TFT monitor

Lamp house:

Standard NUV for 350 – 450nm (Optional DUV for 220 – 350nm), standard lamp power for 350W, 500W or 1000W

UV light uniformity:

150mm: ≤ ± 3%, 200mm: ≤ ± 4%

Intensity: (measured at 365nm)

350W: 8 - 12mW/ cm² 500W: 12 - 15mW/ cm² 1000W:18 - 22mW/ cm²

Applied industry standards:

NRTL – (UL – listed) Semi S2, S8 certified

3 Description of Components

3.1 General View

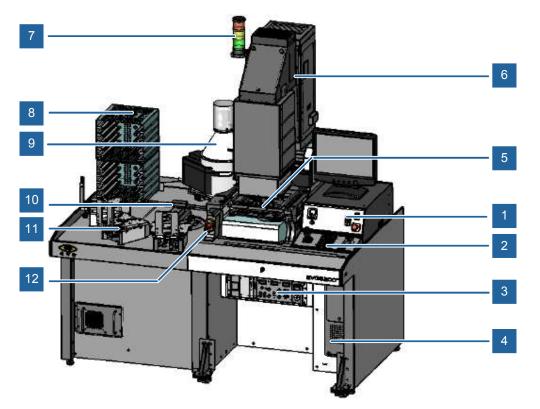


Figure 2 - General View

1	Control Panel	2	Keyboard
3	Lamp Power Supply	4	PC Equipment Rack
5	Optical Alignment Module	6	Lamp House
7	Signal Lamp	8	Storage Rack
9	Optical Pre-aligner	10	Robot
11	Cassette Station	12	Emergency Off Button

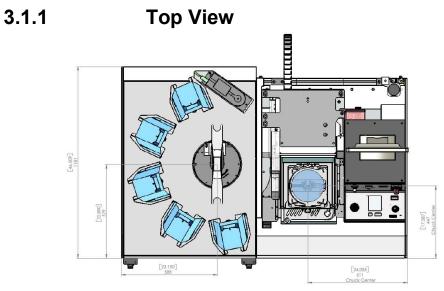


Figure 3 - Top View

3.2 Control Panel

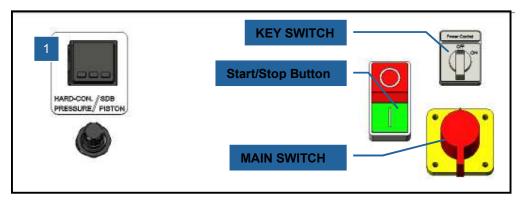


Figure 4 - Control Panel

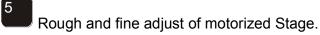
Hard-cont. / SDB PISTON (1)

- To adjust the Hard Contact pressure.
- To adjust the pressure of the SDB Piston (for Silicon direct bonding)
- To supply the flag-cylinder for Proximity Mask holder.

3.2.1 Keyboard Description

JOYSTICK

Figure 5 - Keyboard Description


KEY PANEL

8

2

6

3

- \blacksquare \uparrow Movement control of the Stage
- \downarrow Movement control of the Stage
- \blacktriangleright \leftarrow Movement control of the Stage
- \rightarrow Movement control of the Stage
- U Move stage clockwise
- び Move stage counter clockwise

Enter

Confirms data input

TRACK BALL

The track ball is used for the PC-control

JOYSTICK

With the Joystick it is possible to control the optic motors or if equipped the motorized stage.

Switch between stage and optic selection with the **button** on the joystick.

An active Exposure procedure sequence can be aborted with the button at the Joystick.

Microscope movement:

<u>Y-direction $\uparrow \psi$:</u>

Move joystick in \uparrow front or \checkmark back direction.

If topside is selected, the whole optic moves forward and backward.

If bottom side is selected, the corresponding objective moves in Y-direction.

<u>X-direction $\leftarrow \rightarrow$:</u>

Move joystick in left or right direction.

With top as well as bottom microscope selection, the corresponding objective moves in X-direction.

Z-direction (Z-direction = PHI):

Turn the joystick clockwise or counter clockwise to move the optic in Zdirection (focusing) or the stage in theta direction (PHI axis)

3.2.2 Emergency Stop

Emergency Stop – shut down the system.

4 Start Up System

4.1 Check Facilities

- 1) Check all facilities of the system:
 - a) Exhaust
 - b) Electrical Connections
 - c) CDA, N2; Vacuum

4.2 Check Interlock

1) Make sure that all EMO buttons are released.